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Clinical Research
A Simple Recipe for Doing It Well

warren S. Browner, M.D., M.P.H.*

SUPPOSE a physician observes that five of the last six
patients seen with postoperative myocardial infarction
were taking $-blocking drugs and wants to determine
whether this is a *‘cause—effect’ association (i.e., §-
blocking drugs cause postoperative myocardial infarc-
tion). How can a study of this topic be designed and
analyzed?

Answering this question requires an understanding
of both the anatomy and the physiology of clinical re-
search.! The anatomy of research includes the different
types of study designs, sampling, and measurements.
The physiology is how these ingredients work together
to produce a coherent whole: the study result. In this
essay, 1 provide a basic introduction to the anatomy
and physiology of clinical research, emphasizing study
designs like the randomized trial and statistical issues
like confidence intervals that may be of special interest
to the readers of, and aspiring writers for, ANESTHESIOL-
OGY. :

Study Designs

The Randomized Trial

The most rigorous study design is the randomized
blinded placebo-controlled trial (RCT).?? In an RCT,
subjects are randomly assigned to receive either a treat-
ment (e.g., B-blocking drugs) or a placebo control, and
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the outcome (myocardial infarction) is subsequently
assessed by investigators blinded to the group to which
a subject was assigned.

Why has the RCT become the standard for excellence
in clinical research? We must first look at the goal of
most clinical research, which is to show that an asso-
ciation between two variables is due to cause-effect:
that a certain predictor (e.g., use of -blocking drugs)
causes a given outcome (myocardial infarction).
Showing that an association is cause-effect involves
choosing a research design and using an analytic tech-
nique that make less likely the four other explanations
for an association: effect—cause, effect-effect, bias, and
chance. “‘Effect~cause” involves a reversal of the tem-
poral sequence: patients with myocardial infarctions
may complain of chest pain and be treated with §-
blocking drugs. ‘‘Effect—effect,” or confounding, oc-
curs when the treatment and the outcome are causally
related to a third condition, called the confounder.
Use of §-blocking drugs and postoperative myocardial
infarctions, for example, are both more common in
patients with coronary artery disease. “Bias” can be
generously thought of as an inadvertent mistake; only
a perfectly designed, executed, and analyzed study is
entirely free of bias. One common mistake—detection
bias—occurs if the investigator looks harder for a dis-
ease in one group than another; for example, if patients
treated with 8-blocking drugs postoperatively are more
likely to be in intensive care units, in which infarctions
are more readily detected. Finally, an association may
have occurred by ‘‘chance’’; investigators can use sta-
tistical tests to estimate how likely it is that chance
explains a study’s findings.

RCTs, if designed and executed properly, can elim-
inate the possibilities of effect-cause, effect—effect, and
bias. That is why they are so important in clinical re-
search. In an RCT, patients are assigned to receive the
trearment or the control before the outcome has oc-
currcd, thereby eliminating effect—cause. Randomiza-
tion should also eliminate effect—effect: assigning sub-
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jects randomly to the groups ensures that the only vari-
able is the treatment. The distribution of all the other
characteristics of the subjects, including possible con-
founders like underlying coronary artery disease,
should be similar in the two groups. A comparison of
the characteristics of patients assigned to the treatment
and control groups, usually the first table in the results
section, indicates whether or not randomization was
successful. ““‘Blinding’ means that the investigator can-
not tell to which group a subject has been assigned; it
is especially important when determining whether a
subject had an adverse outcome or not. In drug trials
blinding involves using a ‘‘placebo control”’ that has
an appearance identical to that of the active drug. Pla-
cebo controls also eliminate the possibility of a placebo
effect, in which a patient responds nonspecifically to
any intervention. If blinding and randomization are
successful, they eliminate bias. Thus all that is left to
explain an effect of the treatment, if there is one, are
chance (which can be quantified with a P value) and
cause—effect. If the P value is small, then cause-effect
becomes the most likely explanation.

The actual process of randomization is simple. First,
each enrolled patient is given a study number; this en-
sures that everyone who was enrolled in the study is
forever after considered a subject in the study. Next,
each subject is randomly assigned to either the inter-
vention or control groups. To do so, the investigator
can generate a random number with a computer pro-
gram; if that number is odd, the subject is assigned to
the control group. If a preprinted list of random num-
bers or assignments is used, two persons should be in-
volved—one who is enrolling subjects, and the other
who keeps the list. This assures that the subject’s group
assignment is not known at the time of enrollment.
Alternatively, one can have a pile of numbered, sealed
(and opaque!) envelopes containing group assign-
ments.

Unless blinding is perfect, pseudorandomization
techniques, such as assigning a subject to treatment or
control by odd or even Social Security numbers, should
be avoided. The problem here—as well as with similar
schemes such as randomizing by day of the week—is
that the investigator knows in advance the group to
which a particular subject will be assigned.? This pro-
vides the opportunity to reject a sick patient who has,
for example, an even Social Security number and who
would have been in the intervention group. There can
also be a problem if subjects are randomized in pairs
(one each to intervention and control) and it is not
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possible to maintain blinding—the investigator th,
knows that if the first patient in the pair was in (I
intervention group, the next patient will be in the con.
trol group.

Not all randomizations need to be 50:50, with up
proximately equal numbers of subjects in each group
For some studies, there may be more than one inicr
vention that is of interest, say, a large dose of a me
cation versus a small dose versus a placebo. Occasion-
ally, there may be reasons to randomize more paticnis
to the intervention group, such as if one can enroll a
limited number of patients, and wants to be surc 0
have enough patients in the intervention group to be
able to rule out rare side effects. However, the inves
tigator must recognize that these alternatives to 50:50
randomization may make it more difficult to find a dit-
ference between the intervention and control groups.
For any given total number of subjects, power (see be-
low) is greatest when comparing two groups of equal
size.

Sometimes a patient is assigned to receive a therapy
but does not, for example, because a contraindication
develops after the randomization process. RCTs
should follow the rule ““once randomized, alwayvs
analyzed’: a subject is always considered a membcr
of the original randomization group. This rule means
that RCTs are comparing assignment to a particular
therapy, rather than to the therapy itself. The alter-
native—to analyze just those subjects who actually
receive the treatment or the control—introduces 2
potential bias, because subjects who are lost to fol-
low-up or who refuse treatment are likely to be dif-
ferent in important ways from the other subjects. Bc-
cause of this rule, before a subject is randomized.
the investigator should be absolutely certain that the
patient is eligible, has given informed consent, and
can be followed for the length of the study.

RCTs are not perfect. Sometimes it is impossible to
blind, as in a trial of surgical versus medical therapy
for angina. Even placebo-controlled trials can be dif-
ficult to blind; for example, it is easy to distinguish
subjects who take 8-blocking drugs from those given
placebo. In these situations, the investigator must d¢-
cide whether failure to maintain blinding necessari!y
invalidates the results of the study. That usually de-
pends upon the outcome: if one is comparing the effect
of two treatments on a endpoint like death, presumably
the inability to blind the investigators will not bias the
ascertainment of results. But other endpoints—like the
specific cause of a death, or the diagnosis of broncho-
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spasm—may be influenced by knowledge of a patient’s
(reatment assignment.

RCTs are also subject to ‘‘co-intervention effects,’ in
which an unintended effect of the intervention is re-
,-ponsible for the outcome. For example, $-blocking
drugs may appear to cause an increase in myocardial
infarctions that on further examination is found to be
due to a co-intervention: patients who received (-
blocking drugs were more likely to develop bradycar-
dia, and therapy for the bradycardia (atropine and sym-
pathomimetic agents) may have been responsible for
the increase in infarction risk.

There is another problem with RCTs, especially if
the total number of subjects is small. By chance alone,
there may be maldistribution of an important charac-
teristic: for example, all ten patients with severe un-
derlying coronary artery disease may have been assigned
to the control group. If the investigator knows that there
is a particularly important confounder, it may be wise
to use a stratified randomization, having separate ran-
domization schemes for each of the two strata (those
with and those without severe coronary disease). This
¢nsures that there will be roughly equal numbers of
those patients in both the intervention group and the
control group.

RCTs bring up an important ethical dilemma. At the
start of the study, the investigator presumably does not
know which therapy is better: that is the purpose of
the study.’ But what if it turns out—based on early data
from one’s own study or from another study—that one
of the therapies appears beneficial or harmful? Elaborate
procedures, known as ‘‘stopping rules,” have been de-
veloped to establish guidelines for stopping a study
hefore the anti:. ;zired end of enrollment. These guide-
lines are inter<d vo facilitate decision-making by a
group of mdepcndent investigators who have access to
the unblinded data.?

Other Designs

RCTs are not the only way to do clinical research.
RCTs are inappropriate for many questions, and im-
practical for others. For example, one cannot random-
ize patients to smoke or not smoke before surgery.
When the outcome of interest is rare, such as intra-
operative myocardial infarction, an RCT to determine
whether the risk is greater with one anesthetic agent
than another might require enrolling every patient who
undergoes surgery at ten medical centers for the next
5 yr. These research questions require other sorts of
designs.
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In a ““‘cohort study,” the investigator does not inter-
vene upon the subjects, but simply observes their nat-
ural history through time, as in studies of cardiac
complications in patients undergoing noncardiac sur-
gery.5® Subjects are enrolled, predictor variables are
measured, and then the occurrence of outcomes is as-
certained. Cohort studies have several advantages: for
one, they can answer a series of research questions,
because the investigator need not be concerned that a
new intervention has altered the natural history of the
condition being studied. For another, the limitations
on patient eligibility that plague many RCTs can usually
be avoided, because the investigator is observing, not
intervening. Finally, they can be done retrospectively,
by doing a thorough medical records review. A main
disadvantage of cohort studies is that, unlike RCTs, one
cannot assume that the groups being compared (e.g.,
those who use $-blocking agents, and those who do
not) are alike in other ways. To the extent that potential
confounders, such as severity of coronary disease, have
been measured, they can be adjusted for in the analysis
of the data. However, there are always unmeasured,

.and often inadequately measured, confounders; these

are immune to statistical techniques for adjustment.’

In a “‘case~control study,” the investigator begins
with patients who had the outcome of interest. For ex-
ample, one would identify the last 100 patients who
had suffered a perioperative myocardial infarction.
These are the “‘cases.” Next, a “‘control’’ group of 100
patients who did not have a myocardial infarction is
assembled. The investigator then determines whether
more cases than controls were using $-blocking drugs.
Case—control studies may be the best option when the
outcome of interest is rare (such as intraoperative
death); otherwise, one might have to enroll thousands
of subjects in order to have enough outcomes. How-
ever, case—~control studies are subject to many biases.
Representativeness of the two groups is usually the key
issue—for example, were the cases and controls in the
study a fair sample of all the patients, and were they
comparable in other respects aside from use of (-
blocking drugs?

Samples

In addition to establishing that cause-effect is more
likely than alternative explanations, the investigator has
another task: to convince the reader that the study re-
sults will also apply to other patients. This brings us
to the concept of a sample. The best sample is one that



926

WARREN S. BROWNER

resembles the ‘‘target population,” the group of pa-
tients to which the investigator wishes the results to
apply. In our example, the target population is patients
at risk of having perioperative myocardial infarction.
This target population, of course, includes. everyone
who undergoes surgery, many of whom are at such a
low risk of perioperative infarction that most investi-
gators would wisely consider them not worth studying.
Thus the investigator often restricts the target popu-
lation to a higher risk group, such as patients with one
or more cardiovascular risk factors undergoing surgery.
The actual sample is chosen from a narrower but usually
more convenient group of subjects, established ac-
cording to precisely specified inclusion and exclusion
criteria, such as patients at the investigator’s medical
center who are undergoing elective vascular surgery
and who volunteer to participate.

Each difference between the actual sample and the
target population reduces the ability to generalize the
results. Much of what we know about perioperative
ischemia, for example, has come from studying vol-
unteer patients at a few academic medical centers®®;
the assumption is that those results will apply univer-
sally. All samples also contain an implicit chronologic
assumption, that results generalize from the past and
present into the future. .

The investigator should make explicit the target pop-
ulation to which the results can be generalized; this is
usually a judgment call. For example, if patients whae
had surgery on Tuesdays were excluded for logistic
reasons, the investigator is probably justified in sug-
gesting that the results would apply equally to that
day. On the other hand, results in men do not auto-
matically generalize to women, and results in academic
medical centers may not pertain in the real world.

Measurements

No matter what the study design, it is essential that
variables be specifically defined in an operations man-
ual or study protocol before the study begins. This ap-
plies to all the important variables that are to be mea-
sured, whether the variable is a predictor (use of -
blocking drugs), an outcome (myocardial infarction),
or a confounder (underlying coronary disease). How
would a patient who received a single dose of a short-
acting 8-blocking drug the day before surgery be clas-
sified? Did a patient with a small increase in creatine
kinase isoenzymes but no electrocardiographic changes
have a myocardial infarction? Does an asymptomatic
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patient with a Q wave in an inferior lead have coronary
artery disease? To the extent that definitions are indis-
tinct, or are changed after the study is underway or
completed, patients can be innocently moved from one
category to the next, a form of bias that can render
meaningless the results of the research project. Just as
important, the measurement of the predictors should
not depend upon the outcome variables, and vice-versa.
This can be done by prospectively measuring the pre-
dictors before the outcomes have occurred, and by
blinding the ascertainment of outcome.

The outcome should have ‘‘face validity”’: everyone
should recognize it, and know what it signifies. The
best outcomes, such as myocardial infarction or death,
are those that are universally acknowlcdgcd as being
important. Face validity, of course, varies from study
to study. A physician examining whether a new anes-
thetic technique affects intraoperative renal blood flow
may need to measure a few variables in a small number
of subjects. However, it will not be possible to deter-
mine whether the new technique affects the incidence
of postoperative renal failure.

The Research Hypothesis and Statistical
Issues

The sample, the design, the predictor variable, and
the outcome variable are the components of the *‘re-
search hypothesis,”” which is a clear, simple, advance
statement of what the investigator hopes to find: ““We
hypothesize that patients undergoing vascular surgery
under general anesthesia at our hospital who are ran-
domly assigned to receive prophylactic 8-blocking
drugs will have a lesser rate of postoperative myocardial
infarction than those assigned to receive placebo.”

The research hypothesis focuses the research as it is
designed, executed, and analyzed. Put simply, the pur-
pose of a research study is to determine whether the
research hypothesis is true in the investigator’s sample.
Statistical tests help the reader make a judgment as t0
whether an effect that was found in a sample could
have been due to chance (a “type 1 error”), or if n0
difference was found, how likely it is that an importarn!
effect could have been missed (a ‘‘type II error’’). Be-
fore doing a study, the investigator determines how big
an effect is anticipated, and what levels of error ar€
acceptable. The smaller the effect the investigatof
wishes to detect, or the lower the levels of type 1 and
type Il errors, the larger the required sample size will
be. By tradition, the maximum likelihood of a typ¢ I
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error () is usually set at 0.05. The maximum likeli-
hood of a type II error (8) is set at 0.10 or 0.20, cor-
responding to a “‘power”’ (1 — 3) of 90% or 80%.

How does one go about deciding how many subjects
to study? With too many subjects, a study will be un-
necessarily long and expensive. Without enough, the
results will not be convincing, and they may not be
statistically significant when there is a substantial dif-
ference between the groups being compared. Studies
that are too large or too small waste the investigator’s
iime and resources. They also impinge upon our ethical
obligation to our subjects, who have agreed to partic-
ipate in research in the belief that they are advancing
science.

A general rule is that the sample size must be enor-
mous if the outcome is rare (intraoperative infarction),
moderate in size when the outcome is more common
(intraoperative hypotension), and smallest when the
outcome is a characteristic that can be measured on a
continuous scale (intraoperative blood pressure). In-
vestigators seeking more specific advice on sample size
may wish to look at one of the available articles or texts
on the subject.’*'%!! Consultation with a statistically
oriented colleague may be necessary; such advice will
be most useful if the investigator has prepared a clear
research hypothesis, and has some information about
the incidence of the outcome of interest.

It is often tempting to do a small study, just to try out
an idea. Small studies have a way of failing to be ac-
cepted for publication when they are negative. This
becomes a problem when colleagues review the lit-
erature on a particular topic to do a2 metaanalysis: the
literature is biased toward positive studies.'?

Presenting the Results

Just as the study is designed around the research hy-
pothesis, the manuscript should be written to provide
the answer to that hypothesis, with whatever support-
ing information is needed. There should be a clear dis-
tinction between ‘‘data,”” which the investigator ana-
lyzes, and ‘‘information,’’ the synthesized results of that
analysis presented in a simple manner.!>'* Statistical
tests should be viewed as a means not an end, and
should therefore illuminate, rather than obfuscate, the
results. If the investigator does not understand how the
statistical tests changed the data into meaningful in-
formation, there is little hope of explaining it to the
reader.
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Many investigators believe that purpose of statistical
analysis is to find a few significant P values so that a
manuscript will be publishable. But the Pvalue simply
indicates the likelihood of observing the study results
(or ones more extreme) in the sample if there is really
no difference in the population; it tells us nothing about
the size of the difference. It is much better to emphasize
the effect that was detected, using statistics in a sup-
porting role.

The long-standing emphasis on P values is being re-
placed by reporting ‘“‘confidence intervals.”'® Confi-
dence intervals estimate the precision of the resuits, and
are useful for both positive and negative studies. For
example, two studies might find a difference of 10% in
the risk of perioperative myocardial ischemia between
those not receiving and those receiving 8-blocking drugs.
The first study (with a small sample size) has a 95%
confidence interval from —20% to +40%. Its results are
consistent with the possibility that use of §-blocking
agents is associated with a substantial increase, or a sub-
stantial decrease, in the risk of perioperative ischemia.
The second study, with a larger sample size, and a much
narrower confidence interval of 8% to 12%, provides a
much more precise estimate of the true effect of g-
blocking drugs on ischemia.

Confidence intervals have a one-to-one correspon-
dence with P values: 95% confidence intervals that in-
clude zero, as in the first example above, imply that
the P value is greater than 0.05; how much greater
depends upon how close zero is to an edge of the in-
terval. Similarly, 95% confidence intervals that exclude
zero are synonymous with a P value less than 0.05, as
in the second example; how much less depends upon
how far away zero is from the edges. But confidence
intervals have a big advantage over P values. Because
they indicate the range of values that are consistent
with the results, they are especially useful in negative
(nonsignificant) studies. If the confidence interval for
a negative study includes a clinically important effect
(in the first example above, a 40% decrease in ischemia
risk), then the study has provided almost no informa-
tion one way or the other.

It may be tempting to dredge through the data, look-
ing at many variables in the hope that if one combi-
nation of predictors and outcome does not work out,
another will. Having succumbed, the investigator might
seek evidence that 8-blocking drugs reduce the risk of
cardiac death, myocardial infarction, stroke, arrhyth-
mias, ischemia, renal failure, or length of hospital stay.
In clinical trials, a proliferation of outcome variables
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spells disaster. The more associations that are looked
at, the greater the likelihood of finding something by
chance alone. Post boc analyses that find an effect in
just one subgroup, for example, that 8-blocking drugs
affect myocardial infarction among those with baseline
renal insufficiency, have the same problem. In both
situations, a main advantage of the RCT—that the P
value quantifies the likelihood of observing the study
results by chance-—is lost.

Analyses of multiple outcomes and subgroups must
be evaluated in the light of the small prior probability
of the tested hypotheses.'® If at the start of the trial the
investigator thought that a drug would work in just one
subgroup or for just one endpoint, why bother studying
anyone else or any other endpoints? The answer, of
course, is that the investigator did not, but like the rest
of us, is remarkably good at developing plausible ex-
planations for almost any finding. A sensible policy is
to require much stricter statistical criteria (smaller P
values) for surprising results, and to recognize the ab-
solute need for a confirmatory study.

Understanding the basic rules of research and the
most common mistakes provides a framework for rec-

_ognizing good research. But like a patient who does
not present with classic signs and symptoms, research
does not always follow the rules we have described.
No study is without flaws. A minor bias may be inevi-
table, or a sophisticated statistical technique may be
the only way to analyze the data. The investigator’s
overall task is to convince the reader that despite these
problems, the study is still valid. In turn, the reader’s
most important job is to ask whether the study is well
enough done to affect the way one understands and
practices medicine.
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SAMPLE SIZE CALCULATION

a = 0.05 p = 0.20 Two-tailed Test

o~y

Effect Size (%) Placebo Rate (%) Sample Size Per Group

50 30 133
25 168

23 185

20 219

18 247

15 304

12 389

10 474

40 30 214
25 270

23 299

20 353

18 - 399

15 492

12 631

,_) 10 770
30 30 389
25 492

23 546

20 647

18 733

15 905

12 1163

10 1422

20 30 891
25 1134

23 1260

20 1497

18 1699

15 2102

12 2707

10 3313
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